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Abtraci The electronic and magnetic properties of FeICu superlatices grown in the (1 I I )  
direction, for which Fe Ukes Ihe RC structure, are studied with a parametrized tight-binding 
Hamiltonian. The splitting between majority and minority d bands is rehted to an effeuive 
exchange parameter 3 that we adjust to obtain within our model the bulk magnetization for 
BCC Fe. As the magnetization of bulk m Fe is very sensitive to this parameter we study 
the magnetic properties as a function of it. We find that the 2Fe12Cu superlattice is possibly 
ferromagnetic and that 3Fei3Cu has more than one stable state (paramagnetic, ferromagnetic 
or ferrimagnetic) with quite similar energies. As recent experimental results detect a small 
magnetic moment for h i s  last superlattice, comparison with the calculations suggest that they 
are ferrimagnetic. Comparison wilh calculations for ZFe and 3Fe m(I 11) freestanding slabs 
show that lhe ZFeOCu and 3Fe43Cu superlattices behave as low-dimensional systems. the effecl 
of Cu k i n g  to slightly reduce the magnetic moment per atom of Fe with respect to a free-standing 
slab. 

1. Introduction 

The magnetic properties of artificially made metallic systems have attracted much attention 
in recent years [I] and particular interest has heen focused on the FdCu system. The small 
lattice mismatch at room temperature between FCC y-Fe and Cu and the fact that they are 
mutually insoluble make this system favourable for epitaxial growth. Furthermore, the study 
of FdCu superlattices is a way to study the magnetic properties of FCC Fe, as bulk FCC Fe 
is paramagnetic and only stable at high temperatures. 

Controversial structural and magnetic properties of Fcc Fe when grown on Cu as thin 
films or making multilayers have been reported [2, 3, 4, 5 ,  61. A big experimental effort 
has been made lately 161 to determine if structural and magnetic properties are related to 
each other OT not. Some authors believe that these contradictory results may he related 
to the transition from paramagnetic to different magnetic states of FCC Fe with increasing 
atomic volume predicted by theoretical calculations [7-101. This transition occurs close to 
the atomic volume of Cu at T = 0. One may then foresee a delicate behaviour as a function 
of temperature: while increasing T decreases all forms of order, there is an opposite effect 
due to the increase in the atomic volume that favours magnetism. 

The purpose of our work is to study the effect of dimensionality and hybridization at the 
interface with Cu in the magnetic properties of FCC Fe when forming ordered superlattices. 
We use a tight binding Hamiltonian with s, p and d orbitals parametrized to the pure materials 
as we believe that a tight binding Hamiltonian parametrized to fit bulk equilibrium properties 
of transition metals can be used to obtain qualitative information on the densities of states, 
magnetization and charge transfers in surfaces and superlattices. We consider the atomic 
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volume of BCC Fe in all cases, bulk BCC, bulk FCC and superlattices, as we do not expect a 
tight binding calculation to be able to give the small differences in the equilibrium volume 
by energy minimization. The splitting between the majority and minority d bands is related 
in our calculations to an effective exchange parameter J ,  and when J is adjusted to give 
the bulk magnetization of Bcc Fe ( J  = JO = 1.16 eV) we obtain that bulk FCC Fe is not 
ferromagnetic. We have not considered the antiferromagnetic or ferrimagnetic solutions of 
bulk Fcc Fe. We should note that a small increase in the atomic volume gives rise in our 
calculation, as in most others, to the appearance of a ferromagnetic state of FCC Fe. 

We perform a detailed study of the magnetization in the 2Fd2Cu superlattice as a 
function of J and show that the low-dimensional sbllcture of Fe in this superlattice 
favours the appearance of magnetism for values of J for which bulk FCC Fe is not 
ferromagnetic. However, the precise magnetic moment is difficult to establish. Finally 
we study the 3Fd3Cu superlattice, allowing antiferromagnetic coupling between planes and 
obtain paramagnetic, ferromagnetic and ferrimagnetic solutions. The average magnetization 
value of the ferrimagnetic case seems to compare well with recent experimental results [6]. 

2. Method of calculation 

We study superlattices (SL) of transition metals within a Hubbard tight binding formalism 
in the unrestricted Hartree-Fock approximation. Our aim is to obtain charge transfers and 
magnetic moment profiles, layer by layer, using s, p and d orbitals and also a Madelung 
correction. This last term avoids the dependence of charge transfer from one material to 
the other on the number of layers of each one. The Hamiltonian may be written as 

where c!,, (cj,,,.,) is the creation (annihilation) operator of an electron state on lattice site i ,  
orbital type m and spin u (U = 1: majority, U = 2: minority), t;"' are the hopping matrix 
elements and E;,,,,, the diagonal matrix elements given by, 

and 

is the correction due to double counting in the Hartree-Fock approximation. An,,, is 
the electronic occupation difference per layer and per orbital with respect to the bulk 
paramagnetic values, Mi,,,, is the magnetization, also per layer and er orbital and nimo 
is the electronic occupation per layer, per orbital and per spin. is a Madelung-type 
term per layer obtained by the procedure described in [ll]. 

For EL and s"' we have used parameters given by Andersen from LMTO calculations 
for the pure paramagnetic materials 1121. We have taken for the screened Coulomb 
repulsion terms, Ui,,,,,,,, those calculated in [13] for d-d interactions and U,, = U,, = U,, 
U,a = U+ The relation U,,IUdd is taken from the corresponding atomic integrals. The 
exchange integral I ,  for d orbitals only, is the important parameter responsible for magnetic 
properties. For Fe it was fitted performing a calculation for BE Fe using first and second- 
neighbour interactions so as to give the bulk magnetization of 2.2pBFe atom. We obtained 
J = JO = 1.16 eV and we take this value also for FCC Fe since it is not expected to change 
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significantly [SI. However, ab initio calculations for Bcc Fe show that the majority band is 
narrower than the minority one and this enhances magnetism. As we do not consider spin 
dependent hoppings in our calculations our J value is an upper limit. The J value for Cu 
was taken from LMTO calculations of the Stoner parameter [12]. 

For the FdCu superlattices we assume that Fe grows epitaxially on Cu and study the 
FCC(I 11) growth direction with perfect sharp interfaces. Only first-neighbour interactions 
were considered and the geometric mean of hopping integrals between Cu-Cu and Fs-Fe 
interactions was used for Cu-Fe interactions. We solve the Hamiltonian in reciprocal space 
with a unit cell of n + m atoms for a SL nFdmCu. The Brillouin zone is swept with 1000 
random k points and the resulting levels broadened with a Gaussian as in reference [I41 to 
obtain a better accuracy in the local densities of states Ni,,,.(E) near the Fermi level. The 
Fermi energy is determined requiring global charge neutrality in the cell. We calculate the 
electronic occupations, 

E, 

(4) 

to obtain new site energies using expression (2) and the calculation is repeated iteratively 
until self-consistency in the nimo is achieved. Finally we calculate the total energy, 

t nimr = (cim,cimo) = \ Ni,,(E) d E  
-m 

The precision in each one of the magnitudes calculated, in particular in total energy 
differences, was carefully studied considering different samplings in the Brillouin zone. 

3. Results and discussion 

In table I we show the parameters for Fe and Cu used in the present calculation, which 
correspond to the Bcc ferromagnetic equilibrium density and to the FCC equilibrium density 
respectively. We assume the Same atomic volume for Fe in the BCC and FCC structures 
and do not take into account the small mismatch of 1.5% between FE and Cu for the 
superlattice. The numerical errors involved in our calculation were analysed for bulk Fe 
and Cu considering ten samples of loo0 random k points each with a Gaussian broadening 
of 0.075 eV. We obtain errors in d-orbital occupation of 0.01e in magnetization of 0.03p~ 
and in total energy of 0.09 eV. However, if the same 1000 random k points are used for 
both phases of BCC Fe (paramagnetic and ferromagnetic) the energy difference per Fe atom 
of 0.56 eV has an error of 0.01 eV only. 

The first problem studied was the magnetization of bulk FCC Fe as a function of 
parameter J ,  that controls magnetism. Figure 1 shows the magnetization and energy as 
a function of the parameter J for one set of 1000 random k points. To construct these 
curves the self-consistent procedure described in section 2 is not useful, as it does not give 
the unstable solutions (dM/dJ < 0). We proceed as follows: since there is only one atom in 
the unit cell in this case and Jmm, # 0 only form = m' = d,  there is only one magnetization 
to determine self-consistently which enters the Hamiltonian through the expression: 

with A = JddMd. Giving a fixed value to A we determine self-consistently the An,,. 
Then we calculate the output magnetizations M,,,! = n,<t - n,,,,& and obtain Jdd = A /Md, 
M = Md + Msp and ET with expression (5). The curves shown in figure 1 contain the 
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hble 1. panmeters used in fhe present calculation (eV) U-, = Ud,. Upp = Uw = Us, 
UN = Ua. Jmmi = 0 if m. m‘ # d .  For BCC Fe first- and second-neighbour integrals are given. 
The repulsion parameters for the Madelung term were taken to be 2.67 eV both for Fe and Cu. 

ss Fp Ed(%) &d(Eg) SSa PPO PPn d& ddn 
cu 0.72 5.34 -4.41 -4.50 -1.00 1.78 -0.72 -0Al 0.17 
R(m) 2.42 7.00 -207 -2.21 -1.04 1.83 -0.23 -0.70 0.30 
Fe(Bcc) 2.50 7.04 -2.00 -229 -1.28 2.15 -0.33 -0.80 0.39 

-0.44 0.85 -0.04 -0.37 0.07 

dd6 spo sda pdo pdn U,, Usd udd Jdd 
Cu -0.01 1.33 -0.61 -0.83 0.20 1.00 1.20 3.01 0.70 
Fefm)  -0.03 1.38 -0.82 -1.10 0.26 0.75 0.97 2.33 1.16 
Fe(Bcc)-O.O4 1.66-0.96 -1.28 0.36 0.75 0.97 2.33 1.16 

-0.00 0.62 -0.40 -0.56 0.06 

3 - 
3 
Y 

I 

2 

1 

C 
1 
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Figure 1. Magnetization and total energy for FCC Fe as a function of the parameter J. Full lines 
represent stable solutions and dolied lines unstable and metastable ones. For J c Jsr = 1.26 eV 
the stable solution is pamagnetic. Energies are referred to the panmagnetic phase. One should 
note that when the lanice parameter is increased by only 3% lhe whole figurr is shifted to the 
left so ulal the ferromagnetic solution already appears for J = I .  

ferromagnetic solutions to the problem and were constructed giving different values to A in 
the range from 0 to 4 eV. The broken lines begin at A = 0 and indicate the solutions with 
energy greater than the paramagnetic one. The full lines indicate the stable ferromagnetic 
solutions and begin for a value of J = JST = 1.26 eV. For J c JST the stable solution is 
the paramagnetic one. Since J is at most JO in our model, as discussed before, we conclude 
that Fcc Fe is not ferromagnetic in our approximation at the equilibrium density of BCC 
Fe. Other samples of 1000 k points give similar values of J n  although the shape of the 
total curve may be somewhat different. Total energy calculations within a tight binding 
scheme may be questionable, but after a careful analysis of the results obtained we are 
fairly confident of the sign of the energy differences. For instance, we obtain the energy 
per atom of Fe in the paramagnetic FCC phase 0.3 eV higher than that of the ferromagnetic 

The second problem studied was the superlattice 2Fd2Cu. In figure 2 we show the 
BCC phase. 
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3 r  7 0.6 

J[evl 
Figure 2. Same as figure t for the superlattice ZFeJZCu. 

magnetization per atom of Fe as a function of J obtained by the same method described 
above. We would like to remark that in this case the ferromagnetic solutions exist for 
values of J much smaller than for bulk FCC Fe (figure 1). In particular, JO is of the 
order of J s ,  so that the superlattice has a larger probability of being ferromagnetic than 
bulk  cc Fe. Actually in the range 0.86 eV < J < 1 eV there exist paramagnetic and 
ferromagnetic solutions which are almost degenerate. in energy. From 1 eV to 1.13 eV there 
exist a low-spin solution and a paramagnetic one, with approximately the same energy and 
a high-spin solution which is less stable. Beyond J s  = 1.13 eV the only ferromagnetic 
solution is clearly more stable than the paramagnetic one. We see that a small change in 
the parameter J gives in this case a large change in the magnetic moment ( from M e 1p~g 
to M > 2 . 2 ~ ~ ) .  Small changes in the experimental conditions, for example the details of 
the epitaxial growth, could trigger important changes in the magnetic state. In fact, as in 
figure 1, a lattice expansion would give rise to a decrease in bandwidth and a new plot of 
M versus J in this case would be shifted to smaller values of J, thus giving larger M for 
the same J .  

The 2Fd2Cu superlattice behaves as a low-dimensional system, which favours the 
appearance of magnetism. To show this more clearly we plot in figure 3 the paramagnetic 
partial densities of states in the SL 2FdZCu together with those of bulk FCC Fe and of a 
free-standing slab of two layers of Fe. There is a peak close to the Fermi level in the SL 
and in the slab but not in bulk FCC Fe. This peak will favour magnetism, as can be inferred 
from the simple Stoner criterion N ( E r ) J  > 1. The similarity between slab and SL is due to 
the small Fe-Cu interaction, 

-e? = 2.32 eV >> ddu”-- = 0.53 eV 
To calculate the freestanding slab we use the same model but to account properly for 

the electron spill over we add a layer of s-type orbitals (s’) at each side of the slab as 
explained in [IS]. 

Finally we have studied the superlattice 3Fe/3Cu, allowing the system to develop 
antiferromagnetic order between planes. We also studied the 3Fe free-standing slab in 
the same conditions to compare with the SL. However, as in [15], instead of considering 
the Madelung correction in the slab case, we have shifted the site energies of the extra s’ 
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Figure 3. Densities of states per spin of the paramagnetic phases for (aj FCC Fe, (bj 2FeOCu 
SL (full line: Fe, dotted line: Cu) and (c) 2Fe fremtanding slab. Energies are referred to the 
Fermi level. 

orbitals and the surface Fe orbitals by an amount equal to the difference between the Fermi 
levels of bulk FCC Fe and the bilayer. This simplifies the calculation and gives the same 
qualitative effect. 

In table 2 we give the results for 2Fd2Cu and 3Fd3Cu superlattices and compare 
with those for the 2Fe and 3Fe slabs for Jo. The magnetic moments at the interfaces 
conkm quantitatively the similarity with the freestanding slabs, that is, the effect of low 
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Table 2. Charge transfers, magnetizations (& and tolal energies per Fe atom (eV) for 2Fd2Cu. 
3Fei3Cu superlattices and 2Fe, 3Fe slabs for J = Jo. AET = E+(phase)ET(para), Atz is the 
tolal occupation difference per layer with respect lo the bulk paramagnetic value and And the 
colresponding difference for d orbitals only. S and I indicate surface and interface layers 
respectively. 

System Phase AET laver An And M 
~~ 

Slab 2Fe para 0 SI 0.41 
Fe -0.41 -0.15 

Ferro -0.27 s’ 0.42 -0.04 
Fe -0.42 -0.12 2.88 

ZFejZCu Para 0 Cu 0.08 -0.05 
Fe -0.08 0.00 

Ferro -0.05 Cu 0.10 -0.03 0.00 
Fe -0.10 -0.01 2.59 

Slab 3Fe Para 0 S’ 0.41 
Fes -0.40 -0.11 
Fes-I -0.03 -0.01 

Ferro -0.20 s* 0.41 -0.03 
Fes -0.44 -0.15 2.93 
Fes-1 0.06 0.07 2.44 

Fern -0.32 s’ 0.43 -0.04 
Fes -0.42 -0.14 2.64 
Fes-3 -0.02 0.01 -1.93 

Fer -0.13 -0.03 
3FeL?Cu Para 0 CU, o m  -0.04 

Fe,-, 0.11 0.08 
Ferro -0.07 CUI 0.14 -0.01 0.00 

Fer -0.35 -0.20 2.83 
Fe]., 0.41 0.31 2.09 

~~ 

Fem -0.10 CUI 0.15 -0.01 0.01 
Fe] -0.31 -0.18 2.56 
Fe]-] 0.33 0.24 -1.39 

dimensionality inferred earlier. We see that the effect of Cu is to slightly reduce the value 
of the magnetic moment in the Fe layers with respect to the ones they would have in the 
corresponding free standing slab, as other authors have mentioned before 116, 171. 

Even when the magnetic moments are very similar in the superlattices and in the slabs 
the energy differences between the magnetic solutions and the paramagnetic ones are smaller 
in the SL as a consequence of the positive energy contributions of sp Fe and Cu bands. 

For the 3FeBCu SL there exist three solutions (paramagnetic, ferromagnetic and 
ferrimagnetic), the ferromagnetic solution gives a high average magnetization ( 2 . 5 8 ~ ~ ) .  
much higher than the experimentally measured one. The antiferromagnetic solution gives 
an average magnetization of 1 . 2 4 ~ ~  comparable to the 0 . 8 8 ~ ~  extrapolated for T = 0 
in [6] from magnetic measurements of a 3Fd9Cu SL. In order to make this comparison, 
we verified that the number of Cu layers does not play an important role, by performing 
calculations for ZFeDCu, 2Fe/4Cu and 2Fe/6Cu SL. 

We have also calculated this SL for a smaller value of J = 1 eV which also gives a bulk 
magnetization value for BCC Fe compatible with experience and is closer to calculated values 
of J in the literature. There is no ferromagnetic solution in this case but the ferrimagnetic 
one persists and the average magnetization is 0.66~8, also comparable with experience. 

Concerning charge transfers, we see a spill over of 0.4e in the free surfaces of the 
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slabs. In the superlattices the sp Cu orbitals receive a smaller charge of around O.le 
from Fe interface layers and there are charge oscillations inside the Fe slab. These are 
a consequence of the Madelung term and depend on the chosen value for the Madelung 
parameters, however the magnetizations are almost independent of these parameters. Charge 
oscillations are not present in the free-standing slab due to the simplified method used in 
the calculation. 

We therefore conclude that the FdCu superlattices allow the observation of low- 
dimensional Fcc Fe magnetism, due to the small interaction between Fe and Cu. Magnetic 
solutions appear in our calculations for a reasonable range of values of J ,  but the energy 
differences between different magnetic states is very small. It is therefore understandable 
that small variations in the experimental conditions such as temperature may change the 
magnetic state. 
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